Chemistry 1: How Can I Smell Things from a Distance?

In order to contextualize core ideas about the nature of matter, this unit focuses on the everyday life experience of smelling odors whether close to or far from one’s nose. As students investigate this and other phenomena, they develop models of how people smell odors and use their models to explain and predict what happens in various scenarios. Rather than simply accepting a particle model (that matter is comprised of molecules, which are comprised of atoms), students come to understand this core science idea over time as the only way to explain that air can be compressed, expanded, added to, and subtracted from a container. Students then use the particle model to explain why substances have different properties, and to explain the behavior of particles in each state of matter and at a substance’s melting and boiling points during phase change, including the relationship between the movement of molecules and temperature. Students’ model of matter, which is represented both as a drawing and a written explanation, represents a conceptual understanding that “all matter is made of particles in constant motion,” a concept revisited in future IQWST units in physics, chemistry, life science, and Earth science and central to all future science learning.

ic2-0301-se-cover-9781937846725_rev (1)
Chemistry 2: How Can I Make New Stuff From Old Stuff?

The unit builds an understanding of core science ideas including the particle nature of matter, energy, and substances and their properties. In order to contextualize chemistry concepts in real-world experiences, the unit focuses on making new substances, specifically making soap from two unlikely substances: fat and sodium hydroxide. Students complete a number of investigations of soap and fat as they further their understanding of substances and properties, and explain what happens when substances interact (i.e., chemical reactions). In that process, they also explore the core idea of the conservation of mass and the crosscutting concept of systems. Each cycle of investigation begins with macroscopic phenomena and includes the use of molecular models to help explain the phenomena.

Chemistry 3: How Does Food Provide My Body with Energy?

This cross-disciplinary unit targets core ideas about food, photosynthesis, and cellular respiration in the context of living systems. The unit builds core ideas, crosscutting concepts, and scientific practices addressed in other IQWST units, providing an opportunity to synthesize and deepen understandings. Students address chemical reactions and the energy transformations associated with them and address their relevance in their own lives and to their own bodies. Students investigate food at the molecular level and explore how cellular respiration, as a chemical reaction, allows organisms to use the energy in food. They also examine photosynthesis as the chemical reaction in which plants transform light energy into chemical energy to store in food. This unit thus builds understanding of a key crosscutting concept—the flow of matter and energy—as students consider what happens in a system during cellular respiration and photosynthesis.

Earth Science 1: How Does Water Shape Our World?

To contextualize core ideas about the water and rock cycles at the middle school level, this unit focuses on selected national parks in the United States and the study of features common and unique to each. In groups, students take on the task of collaborating to develop a visitors’ guide that explains how water has shaped the landscape of a single park. To complete this task, students must understand how water moves through the park, what types of rock are present, and how the water and rock have interacted to shape the land. Students learn where water can be found on, above, and below the Earth’s surface. They learn how water moves and is transformed in the water cycle by investigating evaporation, precipitation, infiltration, and flow. Students also explore how rocks are formed and the properties of different types of rock. Finally, they examine the effects of water on the land by investigating weathering, erosion, and deposition. To do so, students engage in relevant scientific practices, address crosscutting concepts, and build an understanding of energy and the particle nature of matter as both apply in the study of Earth science.

Earth Science 2: What Makes the Weather Change?

In this unit, students learn about climate by investigating daily, seasonal, and annual weather patterns. The unit is organized around students analyzing and interpreting data on either condition in various cities around the world. Students develop an understanding of the concepts of climate, weather, pattern, and predictability. They also learn how energy from the sun and the variation in earth surface features create the convection cells in the atmosphere that determine large-scale patterns of temperature, clouds, wind, and precipitation.

Earth Science 3: How Is the Earth Changing?

In this unit, students investigate plate tectonics by investigating how the Earth has changed in the past and continues to change today. The unit begins with a historical perspective as students learn how the theory of plate tectonics was developed through the social processes of evidence gathering and explanation in the scientific community. Students then explore the modern explanation for why plates move on Earth’s surface by applying their understanding of convection, built on the previous studies of convection in the atmosphere, to the Earth’s mantle. They investigate how these internal earth processes drive plate motion and how that motion leads to events such as earthquakes and eruptions, and shape major surface features on Earth, including volcanoes, mountain ranges, islands, and oceanic trenches. They use this conceptual understanding to explain features and events found in selected case-study sites around the world.

Life Science 1: Where Have All the Creatures Gone?

This ecosystem unit focuses on organisms’ needs for survival and what happens when those needs are not met. Throughout the unit, students investigate a specific population change: the decrease in the trout population in the Great Lakes from 1930 to 1990. Because the sea lamprey, as an invasive species in the Great Lakes, is such a fascinating organism, this particular case of population change engages students in learning core science ideas that they can then apply to changes in their local environments or elsewhere. Over the course of their investigation, students learn why food is important, what structures different organisms have in order to eat and reproduce, what the possible relationships are between organisms (e.g. competition, predator/prey, producer/consumer), and what abiotic factors affect ecosystems. All of these pieces help students to invest in developing an evidence-based scientific explanation and engaging in argumentation about why the trout population decreased so dramatically, employing a key scientific practice as they learn core science ideas.

Life Science 2: What’s Going On Inside of Me?

In this unit, students investigate how the human body manages to do the complex activities of everyday life. Students investigate organization in body systems and the role of the body’s cells in these systems. To examine the levels of organization in body systems, students track what happens to food as it goes through the digestive system, to the circulatory system, to be delivered all over the body. The investigation of where food needs to go and where it is processed to release and use energy leads to identifying cells as the location where the major functions of processing food for energy and releasing waste occur. Students build on their understanding of food providing energy and building materials from 6th-grade biology and on the role of energy in chemical reactions from 7th-grade chemistry and identify energy-releasing chemical reactions as occurring within cells to release the energy from food. Students investigate the link of increased oxygen intake with increased activity and obtain evidence that oxygen is also used at the cellular level in these reactions. The unit concludes with an investigation of how body systems are coordinated and the consequences of disruption to various body systems.

Life Science 3: Why Do Organisms Look The Way They Do?

This unit uses investigations of organisms (including people) to raise questions about how similarities and differences between individuals and populations are influenced by the inheritance of traits. Students investigate inheritance in plants they grow in class and investigate pedigrees that document inheritance of human traits, developing a Mendelian model of inheritance to account for the patterns they uncover. Students use this model to explain the source of variation within a population, and why organisms of the same species exhibit many common characteristics. Students examine how changing environmental conditions can influence variation in a population. Through investigations of several data-rich scenarios of population change, students develop a model of how changing environmental conditions can lead to organisms with some variations of traits being more likely to survive and produce offspring, resulting in shifted distributions of those traits in future generations. Students generalize their explanations to develop a model of natural selection as defined by naturally occurring variation in inherited traits, changing environmental conditions and differential survival, addressing most notably the crosscutting concepts of patterns, and of stability and change in systems.

Physical Science 1: Can I Believe My Eyes?

The unit begins with a contextualizing activity in which students view optical illusions that make them uncertain of what they are seeing. They spend the next several weeks investigating light waves and their interaction with matter. To do so, students engage in several scientific practices, with an emphasis on constructing and using models to explain and predict phenomena. Each new investigation causes students to realize that the model they developed to fit one situation does not fit the new one, requiring revision based on new evidence. This practice enables students to engage in modeling in ways similar to those in which scientists develop, use, and revise models they use to explain and predict real-world phenomena. Students continually delve into core science ideas, gaining a deeper understanding of how light moves through space, what happens when it meets matter, how eyes detect light, how colors of light can be perceived, and that some light is non-visible. A conceptual understanding that “light can make things happen” sets the stage for understanding energy, a crosscutting concept revisited in future IQWST units in physics, chemistry, life science, and Earth science and central to all future science learning.

Physical Science 2: Why Do Some Things Stop While Others Keep Going?

Students begin this unit by watching a video of a large Rube Goldberg machine in action and then explore several apparatuses up close, some of which stop quickly and others continue moving without showing signs of stopping. As students explore the apparatuses and different types of energy, they gain a deeper understanding of how energy is involved in everything in the world, how it can be transformed from one type to another, and how it is transferred between systems, addressing several core ideas and crosscutting concepts. Students use two types of qualitative diagrams as models, engaging in the scientific practice of modeling to represent and explain energy conversions and energy transfer between systems.

Physical Science 3: How Will It Move?

This unit focuses on forces and motion in a variety of contexts: tug-of-war, baseball, planetary motion, chemical bonds, and others. It begins with a surprising anchoring activity in which a ball speeds up unexpectedly, and revisits this phenomenon several times throughout the unit. Students generalize from specific examples to construct principles commonly known as the core ideas of Newton’s laws of motion. The differences between force and energy are emphasized, with rules-of-thumb being generated to decide which concept is more useful in given situations and to address crosscutting concepts of system models, and energy and matter. The unit integrates several focal scientific practices: planning and carrying out investigations; data gathering, organization, and analysis; developing and using models; and constructing explanations and engaging in argument from evidence.