EarthComm Chapters
EarthComm Chapters


Chapter 1: Plate Tectonics
Chapter Challenge: Students develop a script for a public service documentary film about volcanoes and earthquakes.
Students examine evidence that Earth’s lithospheric plates are moving, how they move, why they move, and how they interact. They determine the relationship between plate boundaries and volcanoes and earthquakes. They explore the evidence that supports the movement of continents over geologic time. Students investigate volcanic landforms and the hazards of volcanic eruptions. They use models to describe how energy is transmitted in earthquakes and learn about seismic waves, their paths, and the way they are detected and recorded.


Chapter 2: Minerals, Rocks, and Structures
Chapter Challenge: Students design a new exhibit on the geology of their community for the local museum.
Students use a set of observations and tests to identify minerals. They examine the igneous rock, model how sedimentary rock and metamorphic rock form, and then locate each type of rock in their local area and the wider region. They use maps to explore the geologic history of the United States.


Chapter 3: Surface Processes
Chapter Challenge: Students report to the U.S. Olympic Committee on the suitability of a city in Florida and a city in Alaska to host the Summer Olympic Games.
Through a series of activities, students discover the water distribution in various reservoirs and how water moves within the hydrologic cycle. They use stream tables to model high-and-low gradient streams and consider the suitability of each for Olympic events. Students examine the size and shape of particles in streams and apply this to an understanding of how rivers have helped shape the landscape. They learn about soil and think about how their development plans might affect the soil. They model how glaciers and wind affect Earth’s surface. Then they look at the properties of ocean waves and coastal processes.


Chapter 4: Winds, Oceans, Weather, and Climate
Chapter Challenge: Students create a website for a non-profit educational group on winds, oceans, weather, and climate.
Students use a model to study factors that affect global patterns of wind. They review weather basics and compare their weather observations to local forecasts. They examine the formation and distribution of severe weather events—thunderstorms, flash floods, severe winds and tornadoes, and tropic storms and hurricanes. Students map the surface circulation of the ocean and use a model to examine what influences deep-ocean circulation. They also use data to make inferences about El Nino events.


Chapter 5: Global Climate Change
Chapter Challenge: Students write a series of articles about global climate change.
Students examine fossil pollen, ice cores, deep-sea sediments, glacial sediments, and tree rings as evidence of climate change. They also examine how Earth’s orbital variations, plate tectonics, ocean current, and carbon-dioxide concentrations affect global climate. Students use projections of areas around the North and South Poles to determine how the melting or growth of ice sheets would affect sea level and use their calculations to determine its effect on the U.S. Then they consider how global warming might affect their community.


Chapter 6: Earth's Natural Resources
Chapter Challenge: Students produce a report about the impact of an increase in the population of the community on the consumption and supply of natural resources.
Students compare U.S. use of energy resources for the production of electricity to other countries and identify the sources most commonly used for the production of electricity. They examine samples of different types of coal and look at possible ways to conserve coal. They consider how oil and gas deposits are discovered and investigate oil production, imports, and consumption. They extrapolate oil consumption into the future. Then they examine the environmental impacts of the use of coal and explore renewable resources focusing on solar and wind energy. Students also explore Earth’s mineral and water resources.


Chapter 7: Earth System Evolution
Chapter Challenge: Students apply systems thinking to other planets and moons by creating an illustrated script for a documentary.
Students begin by looking for clues about the history of Earth’s crust. They develop an experiment to model the process of outgassing and read about Earth’s early atmosphere and hydrosphere. They are then introduced to the scientific hypotheses for the origin of the biosphere. They explore banded iron formations and make inferences about the volume of oxygen and iron on Earth. Students create a model of the geologic time scale and also model fossil formation as well as adaptations in response to environmental change. Finally, they explore the major biomes of North America and collect data about mass extinctions.


Chapter 8: Astronomy
Chapter Challenge: Students write a script for a radio series on the possible effects that objects in space can have on Earth.
By developing a scale model of the solar system, students learn about relative sizes and distances in the universe. They investigate the celestial coordinate system and use a model to learn the origin of the universe and the solar system. They explore Earth’s orbit and its effects. A model is also used to study the Sun-Earth-Moon system. Students discover the energy released by asteroids hitting Earth and learn about the characteristic of asteroids and comets, the chances of a collision with Earth, and the consequences. They explore the electromagnetic spectrum, the structure of the Sun and its effects on Earth, and the lives of other stars and their chances of affecting Earth.