What is so different about NGSS? – Earth Science

Joe Krajcik
CREATE for STEM
Michigan State University
Atlanta GA
What will we do today?

• Learn a bit more about 3-Dimensional learning
• Experience 3-Dimensional Learning
• Build understanding of Coherence
• Engage in doing a bit of science
What’s new in the Framework and NGSS?

1. Focus on explaining phenomena or designing solutions to problems

2. 3-Dimensional Learning
 1. Organized around disciplinary core explanatory ideas
 2. Central role of scientific and engineering practices
 3. Use of crosscutting concepts

3. Instructions builds towards performance expectations

4. Coherence: building and applying ideas across time
What is three 3-Dimensional Learning Learning

• Three-dimensional learning shifts the focus of the science classroom to environments where students use disciplinary core ideas, crosscutting concepts with scientific practices to explore, examine, and explain how and why phenomena occur and to design solutions to problems.
Overview of EQuIP

<table>
<thead>
<tr>
<th>I. Alignment to the NGSS</th>
<th>II. Instructional Supports</th>
<th>III. Monitoring student progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Three dimensional: Supports students in three dimensional learning to make sense of phenomena or design solutions</td>
<td>Supports learning for all students through meaningful scenarios, supporting practices, supports phenomena and representations</td>
<td>Assessments evaluate three-dimensional learning; include formative; are accessible and unbiased</td>
</tr>
<tr>
<td>2. Coherence: Lessons fit together coherently, develops connections</td>
<td>Provides guidance for teachers to build coherence across the unit</td>
<td>Pre, formative, and summative aligned to three-dimensional learning</td>
</tr>
</tbody>
</table>
What should we look for in designing or deciding on materials?

The lesson/unit aligns with the conceptual shifts of the NGSS:

1. Elements of the science and engineering practice(s), disciplinary core idea(s), and crosscutting concept(s), blend and work together to support students in three-dimensional learning to make sense of phenomena or design solutions.
How do we move further? How do I support students in reaching a PE?
Driving question: How Does Water Shape Our World?

- A nine-week, project-based Earth Science unit.
- Students creating materials for visitor centers in specific national parks in order to show how water has shaped the land in the park.
- Students explore how water moves in the parks, what rock is present in the parks, and how water and rock interact.
Storyline: Question and phenomena motivate each step in building a disciplinary core idea

Goal: Making sense of phenomena or designing solutions

Phenomena driven Questions

- Phenomena + Question
 - Analyze data, explain [PE₁]
 - Initial explanation, model or design

- Phenomena + Question
 - Explain, argue, model [PE₂]
 - Add to/revise

- Phenomena + Question
 - Explain argue, model [PE₃]
 - Add to/revise

- Revisit Driving question
 - Culminating PE
 - Final consensus explanation, model or design

Thanks to Brian Reiser and Michael Novak
Driving Question: How Does Water Shape Our World?

How does water shape our land? Create materials for visitor centers in specific national parks in order to show how water has shaped the land in the park.

Questions to explore
- How Does Water Move?
- Does Water Affect the Land?
- Stream Tables: How Does Water Shape the Land
- How Does Water Shape the Land the Land in Our Parks

Using practice to explore and figure out
- Carryout Investigation Make claims
- Carryout investigation Analyze Data
- Construct Scientific Explanation Communicate Information

What students have figured out
- how water moves between reservoirs and how enters and leaves the atmosphere.
- Water can cause erosion and deposition of material
- processes that shaped a specific landforms in national parks

Overview of two National Parks
Let’s engage in some phenomena!
What we know so far?

• Deposition
• Erosion
What are Scientific and Engineering Practices?

The multiple ways of knowing and doing that scientists and engineers use to study the natural world and design world.

The practices work together – they are not separated!

1. Asking questions and defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Developing explanations and designing solutions
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information
Why Use Crosscutting Concepts?

Ideas that cut across and are important to all the science disciplines

Provide different lenses to examine phenomena

1. Patterns
2. Cause and effect
3. Scale, proportion and quantity
4. Systems and system models
5. Energy and matter
6. Structure and function
7. Stability and change
Build toward the following PE

MS History of the Earth

Students who demonstrate understanding can:

MS-ESS1-4. Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]

<table>
<thead>
<tr>
<th>Scientific and Engineering Practices</th>
<th>Disciplinary Core Idea</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| Constructing Explanations and Designing Solutions | **ESS2.A: Earth’s Materials and Systems**
The planet’s systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth’s history and will determine its future. | **Scale Proportion and Quantity**
Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. |
| Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories. Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will continue to do so in the future. | **ESS2.C: The Roles of Water in Earth’s Surface Processes**
Water’s movements—both on the land and underground—cause weathering and erosion, which change the land’s surface features and create underground formations. |
Build toward the following PE

<table>
<thead>
<tr>
<th>MS Earth’s Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>MS-ESS2-1. Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.** [Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.]</td>
</tr>
</tbody>
</table>

Scientific and Engineering Practices

Developing and Using Models
Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
Develop and use a model to describe phenomena.

Disciplinary Core Idea

ESS2.A: Earth’s Materials and Systems
All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms.

Crosscutting Concepts

Stability and Change
Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale.
How would EQuIP evaluate this lesson on three-dimensional learning?

1. Elements of the science and engineering practice(s), disciplinary core idea(s), and crosscutting concept(s), blend and work together to support students in three-dimensional learning to make sense of phenomena or design solutions.
 a. Provides opportunities to use specific elements of the scientific or engineering practices(s) to make sense of phenomena or design solutions.

Do the materials clearly point out how students use elements of the practice to make sense of phenomena or design solutions?

Poll
- Yes
- No
How would EQuIP evaluate this lesson on three-dimensional learning?

1. Elements of the science and engineering practice(s), disciplinary core idea(s), and crosscutting concept(s), blend and work together to support students in three-dimensional learning to make sense of phenomena or design solutions.

b. Provides opportunities to construct and use specific elements of the disciplinary core idea(s) to make sense of phenomena or design solutions.

Do the materials clearly point out how students use elements of the DCIs to make sense of phenomena or design solutions?

Poll
• Yes
• No
How would EQuIP evaluate this lesson on three dimensional learning?

1. Elements of the science and engineering practice(s), disciplinary core idea(s), and crosscutting concept(s), blend and work together to support students in three-dimensional learning to make sense of phenomena or design solutions.

c. Provides opportunities to construct and use specific elements of the crosscutting concept(s) to make sense of phenomena or design solutions.

Do the materials clearly point out how students use elements of the crosscutting concepts to make sense of phenomena or design solutions?

Poll
- Yes
- No
Summary: Evaluating the focus on 3-dimensional learning

1. Elements of the science and engineering practice(s), disciplinary core idea(s), and crosscutting concept(s), blend and work together to support students in three-dimensional learning to make sense of phenomena or design solutions.

Poll
- Yes
- No
• Business is not the same!
• NGSS is different!
• Revolution and not evolution
A concluding message

• By focusing on core ideas integrating with practices and crosscutting concepts, classrooms become learning environments where teachers and students have time to engage in science by designing and carrying-out investigations and making and debating claims supported by evidence and reasoning.
Thanks to!

IQWST: Investigating and Questioning our World through Science and Technology (Krajcik, Reiser, Sutherland, & Fortus, 2013)

Middle school curriculum materials supporting students using science practices to construct and apply disciplinary core ideas.
Questions??????

• Questions about three dimensional learning?
• Questions about Core Ideas?
• Questions building towards PEs?

Contact information:
Email: krajcik@msu.edu
Twitter: @krajcikjoe